Proof Notebook Problem 3

The Problems:

1. Show that the square of every integer has remainder 0,1 , or 4 upon division by 8 .
2. Show $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} \exists_{z \in \mathbb{R}}\left(x^{y}+z=0\right)$.
3. Let x and y be odd integers. If the product $x y$ has remainder 3 upon division by 4 , then one of the factors has division 3 upon division by 4 .

Please do not do multiple problems: you should have a clear mind for the peer review. Only use the third problem if you're in a group of three.

Due Dates:

Item	Due Date	Method
Draft 1	Friday, September 19 (10pm)	Blackboard
Peer Review 1	Before 2 ${ }^{\text {nd }}$ draft	On your own - nothing to turn in
Draft 2	Tuesday, September 23	In class
Draft 3	Friday, September 26 (10pm)	Blackboard
Peer Review 2	Before final version	On your own - nothing to turn in
Final Version	Tuesday, September 30	In class

The peer review process:

1. Schedule a time to meet in pairs or groups of 3 . Come to the meeting with draft 1 completed.
2. Person 1 presents their proof on the board; Person 2 analyzes each step:
3. Is this step intelligible or nonsense?
4. Does this step say what the Person 1 thinks it says?
5. Does this step follow from the previous steps?
6. Is it clear why this step follows?
7. Switch roles and repeat (2).
